PEF Polyester:
From an idea to a product

Ed de Jong, VP Development
Safe Harbor Statement

This document is being furnished to you solely for information purposes and may not be reproduced or redistributed to any other person. This document does not constitute an invitation or offer to sell, or a solicitation of an offer to subscribe for or purchase, investment products or securities, including securities in Avantium Holding B.V. (the “Company”), and the information provided is not intended to provide a sufficient basis on which to make an investment decision. The information in this document is subject to change. Securities may not be offered or sold in the United States absent registration under the U.S. Securities Act of 1933, as amended or an exemption from registration.

No representation or warranty, express or implied, is given as to the completeness or accuracy of the information or opinions contained in this document and neither the Company nor any of its directors, members, officers, employees, agents or advisers accepts any liability for any direct, indirect or consequential loss or damage arising from reliance on such information or opinions. Past performance should not be taken as an indication or guarantee of future performance, and no representation or warranty, express or implied, is made regarding future performance.

This document may include statements that are, or may be deemed to be, "forward-looking statements". These forward-looking statements may be identified by the use of forward-looking terminology, including the terms "believes", "estimates", "plans", "projects", "anticipates", "expects", "intends", "may", "will" or "should" or, in each case, their negative or other variations or comparable terminology, or by discussions of strategy, plans, objectives, goals, future events, intentions, beliefs or expectations. Forward-looking statements may and often do differ materially from actual results. Any forward-looking statements are based on and reflect the Company’s current plans, estimates and projections as well as its current view with respect to external conditions and future events; any forward-looking statements are subject to risks relating to future events and other risks, uncertainties and assumptions relating to the Company’s business, results of operations, financial position, liquidity, prospects, growth or strategies. Forward-looking statements involve inherent risks and uncertainties and speak only as of the date they are made.

The Company expressly disclaims any obligation or undertaking to update, review or revise any forward looking statement contained in this document whether as a result of new information, future developments or otherwise.
Key topics of this Presentation

PEF Polyester: From an idea to a product

- What are the challenges in setting up the supply chain for a novel polyester?
- Which novel applications can be addressed by PEF?
- What added value does PEF bring to potential customers?
- Is PEF a competitor to PET, or an opportunity for market growth?
Agenda

1. Introduction to PEF: Opportunities for a novel biobased polyester

2. Creating up the PEF Value Chain

3. PEF properties

4. PEF Application business cases
Avantium, an innovative renewable chemicals technology company

- Founded in 2000 in Amsterdam
- 61 patent families
- Geleen pilot plant 24/7 operational
- 140 employees
- 18 nationalities

Intended JV with BASF, the global #1 chemical company,

- YXY Technology
- Catalysis
- Renewable Chemistries

€20m Last financing round April 2016
The YXY technology

YXY: Avantium technology to convert plant-based sugars to FDCA and PEF

FDCA (Furan-dicarboxylic acid): the green versatile chemical building block

PEF (Polyethylene Furandicarboxylate): the next generation polyester
PEF the next generation polymer with blockbuster potential

PEF

Superior Performance
- Gas barrier
 - Oxygen 10x
 - CO2 10x
 - Water 2x
- Heat resistance
 - 12°C higher glass transition
- Rigidity
 - 60% higher modulus

Favourable characteristics
- 100% bio-based
- 100% recyclable
- -70% carbon footprint
- Same recycling processes

vs. PET
PEF end-markets

Packaging
- CSD
- Water
- Personal care
- Food
- Spirits/wine
- Home care
- Beer
- Dairy
- Still & sports drinks
- Foil pouches

Fibers
- Carpets
- Sport apparel
- Clothing
- Performance
Agenda

1. Introduction to PEF: Opportunities for a novel biobased polyester
2. Creating up the PEF Value Chain
3. PEF properties
4. PEF Application business cases
YXY unique end-to-end process proven at pilot scale

Sugar DeHydration → Oxidation → Purification → Polymerization → Processing (ISBM) → PEF

New assets → New or Retrofit assets → New or Retrofit assets → Existing assets → Existing assets

Sugar syrup → RMF → crude FDCA → purified FDCA → PEF resin → PEF

- H₂O → +O₂ → +MEG

(Carbohydrate – Fructose) → (5-methoxyMethylFurfural) → (FuranDiCarboxylicAcid) → (FuranDiCarboxylicAcid) → (Polyethylene-Furanoate)
Avantium operates a pilot plant at the Chemelot Campus in Geleen, the Netherlands

- Constructed in 2011, start-up in 2012
- Full-time operation: runs 24 hours per day, 7 days per week
- Objectives:
 - Process development
 - Production of FDCA and PEF for testing purposes and application development
Strong strategic partnerships with key customers creating PEF bottle market pull

- PEF bottles for carbonated beverages and still drinks
- PEF bottles for water: still, sparkling, flavoured
- JDA field: PEF bottles for alcoholic beverages, solid & liquid food, home & personal care
BASF and Avantium intend to establish Joint Venture

15 Mar 2016 Press release

• Production and marketing of furandicarboxylic acid (FDCA) based on renewable resources, the main new building block for polyethylenefuranoate (PEF)

• Further development and licensing of Avantium’s production processes for FDCA and PEF at industrial scale

• Intention to build a reference plant for FDCA with an annual capacity of up to 50,000 tons at BASF’s Verbund site in Antwerp, Belgium
Broad engagement with end-customers in various applications

<table>
<thead>
<tr>
<th>PEF</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Thermoforming</td>
<td>Joint development Agreement with OMV//Polytype and various end-users</td>
</tr>
<tr>
<td>Film</td>
<td>Joint development with leading thin film converter and end-users</td>
</tr>
<tr>
<td></td>
<td>Evaluation with a world leading high-end film specialist</td>
</tr>
<tr>
<td>Fiber</td>
<td>Evaluation with leading carpet manufacturer</td>
</tr>
<tr>
<td></td>
<td>Evaluation with apparel manufacturer and brand-owners</td>
</tr>
<tr>
<td></td>
<td>Evaluation of technical fiber applications</td>
</tr>
<tr>
<td>Other</td>
<td></td>
</tr>
<tr>
<td>FDCA based Co-polyesters</td>
<td>Evaluation with leading toys manufacturer</td>
</tr>
<tr>
<td></td>
<td>Development with a leading biochemicals player</td>
</tr>
<tr>
<td></td>
<td>Initiating evaluation with a leading chemicals player</td>
</tr>
</tbody>
</table>
Next stop: commercialization

<table>
<thead>
<tr>
<th>Lab-scale</th>
<th>Pilot Plant scale</th>
<th>Commercial scale</th>
<th>Industrial scale</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amsterdam</td>
<td>Geleen</td>
<td>Antwerp</td>
<td>TBD</td>
</tr>
<tr>
<td>Scale: kg’s</td>
<td>Scale: tons</td>
<td>Up to 50kt</td>
<td>100’s of kt</td>
</tr>
<tr>
<td>Goal: Innovative research</td>
<td>Goal: proof of technology</td>
<td>Goal: commercial launch of FDCA & PEF</td>
<td>Goal: further roll-out of FDCA & PEF at larger scale</td>
</tr>
<tr>
<td>Avantium → JV</td>
<td>Avantium → JV</td>
<td>Joint Venture</td>
<td>Licensing and or own & operate by partner</td>
</tr>
</tbody>
</table>
Agenda

1. Introduction to PEF: Opportunities for a novel biobased polyester
2. Creating up the PEF Value Chain
3. PEF properties
4. PEF Application business cases
PEF – An in-depth look

- A small change in chemical structure – intrinsically different properties

Straight aromatic bond – more flexible chain

Shorter, angled aromatic – more rigid chain

<table>
<thead>
<tr>
<th>Property</th>
<th>PET</th>
<th>PEF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Density</td>
<td>1.36 g/cm³</td>
<td>1.43 g/cm³</td>
</tr>
<tr>
<td>O₂ permeability</td>
<td>0.114 barrer</td>
<td>0.0107 barrer</td>
</tr>
<tr>
<td>CO₂ permeability</td>
<td>0.46 barrer</td>
<td>0.026 barrer</td>
</tr>
<tr>
<td>T<sub>g</sub></td>
<td>~76°C</td>
<td>~88°C</td>
</tr>
<tr>
<td>T<sub>m</sub></td>
<td>250-270°C</td>
<td>210-230°C</td>
</tr>
<tr>
<td>E-modulus</td>
<td>2.1-2.2 GPa</td>
<td>3.1-3.3 GPa</td>
</tr>
<tr>
<td>Yield strength</td>
<td>50-60 MPa</td>
<td>90-100 MPa</td>
</tr>
<tr>
<td>Quiescent Crystallization time</td>
<td>2-3 min</td>
<td>20-30 min</td>
</tr>
</tbody>
</table>

Oriented PEF: Barrier properties

Material Properties

<table>
<thead>
<tr>
<th>Material</th>
<th>BOPEF1</th>
<th>BOPET1</th>
<th>BOPET2</th>
<th>BOPP2</th>
<th>BOPLA3</th>
</tr>
</thead>
<tbody>
<tr>
<td>OTR, cc-mm/m²-day-atm</td>
<td>0.15-0.51</td>
<td>2.4-3.3</td>
<td>2.0-6.0</td>
<td>42</td>
<td>17</td>
</tr>
<tr>
<td>CO₂ TR, cc-mm/m²-day-atm</td>
<td>1.4-2.6</td>
<td>24-28</td>
<td>21-22</td>
<td>100</td>
<td>70</td>
</tr>
<tr>
<td>WVTR, g-mil/100in²-day</td>
<td>0.6</td>
<td>1.3</td>
<td>1.0-2.0</td>
<td>0.25-0.4</td>
<td>24</td>
</tr>
</tbody>
</table>

1 Data obtained using Mocon OXTRAN & Mocon PERMATRAN at CWRU, 77°F 0% RH for O2 & CO2, 100°F, 90%RH for Water
3 Natureworks Technical data sheet 4043D
Oriented PEF: Mechanical Properties

<table>
<thead>
<tr>
<th>Material</th>
<th>BOPEF¹</th>
<th>BOPET¹</th>
<th>BOPET²</th>
<th>BOPP²</th>
<th>BOPLA³</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tensile modulus, GPa</td>
<td>4.5-8.0</td>
<td>3.9-5.3</td>
<td>3.3-3.5</td>
<td>2.4</td>
<td>3.6</td>
</tr>
<tr>
<td>Max tensile Strength, MPa</td>
<td>120-300</td>
<td>170-250</td>
<td>140-180</td>
<td>184</td>
<td>123</td>
</tr>
<tr>
<td>Elongation at break, %</td>
<td>40-80</td>
<td>60-120</td>
<td>90-110</td>
<td>80</td>
<td>130</td>
</tr>
</tbody>
</table>

1 Data obtained using instron 5565 tensile tester at Avantium, 50%/min extension rate
3 Natureworks Technical data sheet 4043D
Safety

- Food Contact Safety studies being finalized:
 - All data indicates the polymer and monomer are safe
 - EFSA scientific opinion published October 2014
 - Positive opinion for FDCA 5mg/kg for all food
 - European regulation expected 2015
 - FDA registration to be prepared ~2017

- Safety studies FDCA monomer to support REACH registration:
 - Monomer is demonstrated to be safe
 - REACH registration completed 2013
Recycling

- Optimize end-of-life solutions for PEF polymer

- End goal: PEF to PEF recycling:
 - Mechanical recycling: demonstrated using same steps as PET
 - Chemical recycling: demonstrated PEF depolymerization to monomers
 - Timing depends on volume and value

- PEF and the rPET stream
 - Conducting sorting trials at waste separation & recycling sites
 - Different IR profile than PET or any other known plastic
 - Food grade approved recycling companies have sorting capability
 - Effect of PEF in rPET processes and end products being assessed
 - Incidental contamination
 - Higher PEF contents
First PEF T-shirts of 100% recycled PEF bottles

100% Biobased

Made from 100% Recycled PEF

Conventional polyester spinning technology

Conventional polyester dyeing technology
Agenda

1. Introduction to PEF: Opportunities for a novel biobased polyester
2. Creating up the PEF Value Chain
3. PEF properties
4. PEF Application business cases
Market direction towards smaller servings

How small can you go?

1.5L 1.0L 0.5L <0.33L
Market direction towards smaller servings

How small can you go?

<table>
<thead>
<tr>
<th>Solution</th>
<th>Glass</th>
<th>Can</th>
<th>PET</th>
<th>Multilayer</th>
<th>Coating</th>
<th>PEF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weight</td>
<td>High</td>
<td>Low</td>
<td>Mid</td>
<td>Mid-Low</td>
<td>Mid-Low</td>
<td>Low</td>
</tr>
<tr>
<td>CO₂ BIF</td>
<td>∞</td>
<td>∞</td>
<td>1x</td>
<td>~3x</td>
<td>~3x</td>
<td>~5x</td>
</tr>
<tr>
<td>Transport</td>
<td>Poor</td>
<td>Good</td>
<td>Fair</td>
<td>Fair</td>
<td>Fair</td>
<td>Good</td>
</tr>
<tr>
<td>Production Complexity</td>
<td>Low</td>
<td>Low</td>
<td>Low</td>
<td>High</td>
<td>Mid</td>
<td>Low</td>
</tr>
<tr>
<td>Recycling</td>
<td>Full</td>
<td>Full</td>
<td>Full</td>
<td>Partial</td>
<td>Partial</td>
<td>Full</td>
</tr>
<tr>
<td>Shape freedom</td>
<td>Mid</td>
<td>Low</td>
<td>High</td>
<td>High</td>
<td>High</td>
<td>High</td>
</tr>
</tbody>
</table>
Small Size PEF Bottles

Smaller is Better!

Small size carbonated drink bottles with PEF

Compared to same bottle in PET:
- 2x Top Load
- 4-6x CO₂ shelf life
- Improved creep resistance

Opportunities:
- Brand differentiation (vs. cans)
- New sales channels & supply chains
- Event drinks
Market direction to clean labels, health conscious drinks and event bottles - *Keeping the oxygen out*

- Sauces
- Dressings
- Edible Oil
- Vitamin
- Flavored waters
- Juice
- RTD tea/coffee
- Beer
- Alcohol Pops
Market direction to clean labels, health conscious drinks and event bottles - *Keeping the oxygen out*

<table>
<thead>
<tr>
<th>Solution</th>
<th>Glass</th>
<th>PET</th>
<th>Multilayer</th>
<th>Coating</th>
<th>Active O$_2$</th>
<th>PEF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weight</td>
<td>High</td>
<td>Mid</td>
<td>Mid-Low</td>
<td>Mid-Low</td>
<td>Mid</td>
<td>Low</td>
</tr>
<tr>
<td>O$_2$ BIF</td>
<td>∞</td>
<td>1x</td>
<td>10x</td>
<td>10x</td>
<td>10x</td>
<td>10x</td>
</tr>
<tr>
<td>Hot filling and Pasteurization</td>
<td>Excellent</td>
<td>Fair</td>
<td>Fair/poor</td>
<td>Fair</td>
<td>Fair/poor</td>
<td>Good</td>
</tr>
<tr>
<td>CO$_2$ pressure resistance</td>
<td>Excellent</td>
<td>Good</td>
<td>Fair</td>
<td>Poor</td>
<td>Fair</td>
<td>Good</td>
</tr>
<tr>
<td>Production Complexity</td>
<td>Low</td>
<td>Low</td>
<td>High</td>
<td>Mid</td>
<td>Low</td>
<td>Low</td>
</tr>
<tr>
<td>Recycling</td>
<td>Full</td>
<td>Full</td>
<td>Partial</td>
<td>Partial</td>
<td>Partial</td>
<td>Full</td>
</tr>
</tbody>
</table>
New packaging format PEF bottles

Strong shape flexibility for O$_2$ sensitive products with PEF

Compared to same bottle in PET:
- 10x O$_2$ shelf life
- 4-6x CO$_2$ shelf life
- Heat resistance

Opportunities:
- Clean Labels (preservative free)
- (Biobased) Packaging differentiation
- Event drinks
The PEF packaging opportunity

- PEF is a 100% biobased polyester with unique performance advantages over PET; allowing novel packages:
 - Switching from glass to plastic, e.g. for events and/or long transport
 - Replacement of barrier technologies by transparent monolayer PEF
 - Clean labels with a hot fillable O$_2$ barrier bottle
- Avantium’s proprietary YXY technology for FDCA and PEF is compatible with existing PTA and PET assets.
- PEF demonstrated at pilot scale in wide range of applications:
 - Wide variety of bottles
 - Trays, cups and capsules
 - Films for sealing/wrapping and pouches
 - Fibers for apparel and technical performance
- Avantium and BASF are in planning stage for first commercial FDCA facility
Thank you for your attention!

Contact details:
E-mail: ed.dejong@avantium.com
Telephone: +31 6 34347096